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Abstract

We examine the role of employment protection legislation (EPL) on labor market

dynamics in a search and matching model with costly firing. To guide our

modeling approach, we establish three empirical regularities. First, average job

destruction flows are much larger than average net reductions in employment.

Second, stronger EPL is associated with a larger relative variability of job

creation vs job destruction flows. Third, stronger EPL is associated with a weaker

Beveridge curve relation measured as the negative correlation between vacancies

and unemployment. We then use our model to examine the role of job destruction

flows for the assessment of the firing costs’ impact on labor market dynamics. We

find that considering only net reductions in employment instead of job destruction

flows biases the quantitative evaluation. The impact of firing costs on the labor

market is an order of magnitude smaller when only net reductions in employment

are costly. In addition, the distortionary impact of firing costs on labor market

dynamics is underestimated. Firms opt to adjust labor input more strongly along

the job creation and the intensive margin (hours worked per worker) when firing

costs apply to job destruction flows.

JEL class: E32, F44, J22

Keywords: Search and matching, firing costs, employment protection legislation,
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INTRODUCTION

There is a large literature on the role of employment protection legislation (EPL) for labor

market outcomes, including the seminal contributions of Garibaldi (1998), Hamermesh (1996),

Hopenhayn and Rogerson (1993), Nickell (1986), Oi (1962), Pries and Rogerson (2005), and

Veracierto (2008). Most of this literature has studied the role of EPL in the long-run. In

this paper, we seek to shed more light on the influence of EPL on labor market dynamics

over the business cycle.

A few papers have studied the role of EPL for labour market dynamics over the business

cycle frequencies (see e.g. Veracierto (2008), Llosa, Ohanian, Raffo, and Rogerson (2014),

Wesselbaum (2016)). A shortcoming of these contributions is that they remain vastly silent

about the interplay between EPL and job creation and destruction flows. For instance Llosa

et al. (2014) even abstract from such flows and consider only net changes in employment for

their analysis of EPL. In contrast to these papers, we are particularly interested in the role

of job creation and destruction flows for the assessment of EPL.

There are reasons to believe that taking these flows into account matters for the assessment

of EPL. For instance, whether firing cost apply to net changes in employment (as in Llosa

et al. (2014)) or to the total amount of fired workers can be quantitatively very important.

Net employment changes and firing flows may be very different in size. Also, firms may opt to

adjust employment more strongly along the hiring margin when firing workers becomes more

costly. Hence, to adequately capture the distortionary effects of firing costs, job creation and

destruction flows should be considered.

In our empirical part, we provide evidence that these considerations are quantitatively

important. First, we document that firing flows are between 5 to 40 times larger than the

average net reduction in employment. This finding is based on the recently-constructed 6th

vintage of the CompNet data set and the business dynamics database of the US census bureau.

Second, based on the same data set, we find that countries with higher EPL – measured

by the OECD indicator for protection against dismissals – tend to have higher relative

variability of the hiring versus the firing margin. Additionally, we document further empirical

regularities between EPL and labor market dynamics to guide our modeling approach. More

specifically, using the data set of Amaral and Tasci (2016), we find that EPL is associated with

a weaker negative correlation between vacancies and unemployment. In other words, EPL is
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associated with a weaker Beveridge curve relation. A further empirical regularity that guides

our modeling approach is the positive association between EPL and the relative variability

of the intensive vs. extensive margin of labor (hours worked per worker vs. employment).

This empirical regularity has been established by Llosa et al. (2014).

Our quantitative analysis is based on a search and matching model in the spirit of

Mortensen and Pissarides (1994). To incorporate EPL in the model, we assume firing workers

is subject to firing costs. The firing costs take the form of a wasteful tax – wasteful in the

sense that the tax is paid by the employer to a third party, like procedural costs. Following

Yashiv (2000a, 2000b, 2006) and Merz and Yashiv (2007), the model exhibits a convex hiring

cost function. Further, to accommodate the criticism of Llosa et al. (2014), it exhibits

explicitly an intensive and extensive margin of labor supply. We show that the model is able

to replicate the most salient features of US labor market data. Further, the model is able

to explain the documented stylized facts about the relation between EPL and labor market

dynamics. That is, an increase in firing cost can explain the bulk of (i) the observed positive

association between EPL and the higher relative variability of hiring versus firing flows and

(ii) the observed negative association between EPL and the strength of the Beveridge curve

relation. Further, the model is also able to explain the positive relation between EPL and

the relative variability of the intensive versus extensive margin of labor supply – a stylized

fact reported in Llosa et al. (2014).

To analyze the role of a distinct job creation and destruction margin, we compare our

model to an alternative version in which firing costs are similar as in Llosa et al. (2014).

More specifically, we assume that firing costs apply only to net reductions in employment.

Hence, in the alternative version, the size of job destruction flows does not (directly) matter

for firing costs. Also, firing costs do not (directly) incentivize using the hiring margin more

strongly. Thus, in this sense, the comparison between both models reveals the (direct) role

of job creation and destruction flows for the assessment of EPL.

We find that considering explicitly job creation and destruction flows for the quantitative

assessment of EPL matters. In particular, the impact of the same size of firing costs is an

order of magnitude larger when firing costs apply to job destruction flows instead of net

reductions in employment. The reason is that in our model, like in the US data, average net

reductions in employment are about 30 times smaller in size than average job destruction

flows. Hence, everything else equal, the same increase in firing costs imposes much smaller
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effective costs in the alternative version of the model. Besides this “size effect”, also the

impact of firing costs on the labor market dynamics is different. Even when we control for

the size effect, two major differences between the two modeling approaches of EPL arise.

First, in face of firing costs, firms opt to adjust employment even more heavily along the job

creation margin in our baseline model compared to the alternative version. Second, firms opt

to adjust labor input even more heavily along the intensive margin of labor in our baseline

model when faced with firing costs. Thus, the distortionary effects of firing costs on labor

market dynamics are underestimated if job destruction flows are disregarded in the analysis

of EPL.

The remainder of this paper is organized as follows. Section I documents stylized facts

regarding the relationship between the OECD indicator for protection against dismissal and

labor market dynamics. Section II provides our model. Section III presents the calibration

of our model and its fit with US labor market data and the stylized facts documented in

Section I. Section IV explains the models mechanism that underlies this fit and and analyzes

the role of explicitly considering job creation and destruction flows for the assessment of EPL.

Section V shows how robust the results are for different model specifications and Section VI

concludes.

I EMPIRICAL LABOUR MARKET OUTCOMES AND EPL

This chapter sets out the empirical foundation for our analysis of the impact of EPL. It

documents cross-country differences in labor market outcomes and establishes empirical

regularities between EPL and labor market dynamics on the basis of novel data sets. These

empirical findings guide our modeling approach for the subsequent assessment of EPL. As

measure of EPL, we use the OECD indicator for Protection Against Dismissal. The OECD

indicator gives us a synthetic cardinal measure of various costs involved in firing workers

across countries. It measures the protection of permanent workers against individual and

collective dismissal.

I.I Job creation, job destruction flows and net reductions in employment

Our first empirical finding is that average job destruction flows are in general much larger

than average net reductions in employment. Table 1 shows the average net reduction in

employment as proportion of average job destruction flows for a set of 19 countries. The
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average net reduction in employment is computed as follows. First, we compute the average

absolute size of employment changes over all periods in which employment is reduced. Then

we weight this number by the relative frequency of reductions in employment. In our data

set, average job destruction flows are between 5 (Italy) to 40 (Lithuania) times larger than

the average net reduction in employment. In the US, job destruction flows are about 30

times the average size of net reductions in employment. This suggests that, when modeling

EPL as firing costs, it matters quantitatively whether job destruction flows or net changes in

employment are considered.

Table 1: Average net reduction in employment as proportion of average job destruction flows

Belgium 7.3% Hungary 8.4% Slovakia 13.8%
Croatia 12.8% Italy 2.4% Slovenia 17.9%
Czech Republic 13.5% Lithuania 21.1% Spain 17.4%
Denmark 16.9% Netherlands 8.4% Sweden 4.7%
Finland 10.8% Poland 10.1% US 3.3%
France 5.7% Portugal 10.6%
Germany 19.0% Romania 15.4%

Our second empirical finding is that stricter EPL is associated with a larger variability of

job creation vs. job destruction flows. This finding is shown in Figure 1. The figure shows

data on employment flows and EPL from 15 European Union (EU) countries and the US.

The vertical axis represents the variance of the job creation rate (jcr) relative to the variance

in the job destruction rate (jdr). The horizontal axis denotes the OECD indicator for

Protection Against Dismissal. The black line represents the fitted line of an OLS regression

performed in logarithms. The intuition behind this result is as follows. When firing becomes

more costly, firms opt to adjust employment more strongly along the job creation instead

along the job destruction margin.

[Insert Figure 1 here]

The data on employment flows of the EU countries stems from release 6 of the ECB

CompNet database. The database consists of a set of harmonized indicators drawn from

firm-level data of 18 EU countries. For the analysis shown in Figure 1 we drop Croatia,

Lithuania and Romania from the sample because for these countries, the OECD does not

publish an indicator for Protection Against Dismissal. The maximum time period covered

ranges from 1999-2016, but varies across countries. We use always the full available time
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period for each country in our analysis. The main advantage of using the CompNet database

for analysing employment flows is the comparability across countries. The data is harmonized

along key concepts such as the definition of the job creation and destruction rate, the industry

coverage, the target firms and the method of aggregating firm-level data. Also, while many

data sets on employment flows cover only one or few sectors, the CompNet database covers

firms in all sectors of the business economy with the exception of mining and agriculture,

utilities and the financial sector.1 Although our focus lies on fluctuations in the short- to

medium-run, we do not use HP-filtered data in our analysis. The reason is that in a short

sample, the HP filter is rather unreliable. Nevertheless, to avoid that an underlying long-term

trend drives the results, we focus on job creation and destruction rates and the employment

growth rate.

The US data is based on the Business Dynamics Statistics of the US Census Bureau.

This statistic is compiled from establishment-level data of the private non-agricultural sector

of the economy. The data coverage starts in 1977. However, for better comparability, we

only consider the 1999 to 2016 sample. Further information about the data can be found on

the US Census Bureau’s website. The measurement method of the US employment flows

is not fully consistent with the CompNet data. Nevertheless we include US data into our

analysis because the US economy is often taken as a benchmark. The qualitative results of

our empirical analysis remain unchanged when we exclude the US.

I.II The Beveridge curve: Correlation between vacancies and unemployment

A further empirical finding we establish is that the stricter EPL is, the weaker is the negative

correlation between vacancies and unemployment. Figure 2 shows this finding. In the figure,

the correlation between vacancies and unemployment of 16 OECD countries is plotted against

the OECD indicator for Protection Against Dismissal. The black line shows the OLS fitted

line based on an OLS regression in levels. The specification in levels provides a better fit

than the specification in logarithms. It shows the positive association of EPL with the

correlation between vacancies and unemployment. The intuition behind this result is as

follows. Consider an economy that has no legal firing restrictions and faces an increase in, say,

aggregate demand. In response to this increase, firms seek to raise employment by posting

more vacancies and by firing less workers. This behavior leads to lower unemployment and,

hence, gives rise to the negative correlation between vacancies and unemployment. In general,
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the reduction in dismissals affects unemployment measures more directly than an increase in

open vacancies because it takes time until an open vacancy is filled. As our first empirical

regularity suggest, firms opt to adjust employment more strongly along the hiring margin

when firing becomes more costly. Hence, higher firing costs reduces the contemporaneous

correlation between vacancies and unemployment as unemployment responds more sluggishly

to changes in hiring.

[Insert Figure 2 here]

The data set we use stems from Amaral and Tasci (2016). They gather data on vacancies

and unemployment for a sample of 16 OECD countries. The data set covers, for most

countries, at least the periods between 1980 and 2011. In our analysis, we use the full sample

available for each country. However, our results also hold in the balanced data set that ranges

from 1999Q4 to 2005Q1. The main advantage of using their data set is that they adjust the

time series carefully to take into account structural breaks and missing data. Also, they use

data on unemployment that is comparable across countries because it is based on the ILO

definition. However, a limitation that also the data set of Amaral and Tasci (2016) is subject

to is the comparability of the vacancy data across countries. Unlike for unemployment, there

are no harmonized reporting schemes for vacancy data. Hence, also in their data set the

definition, scope and reference period of the vacancy data may differ across countries. What

mitigates the comparability issue is that we use the HP-filter to detrend the data in our

analysis. As Amaral and Tasci (2016) emphasize, using the HP-filter gets rid of all the data

collecting differences that manifest themselves at low frequencies.

I.III Intensive and extensive margin of labor

An additional empirical regularity, with which we guide our modeling approach, is the

following. Stricter EPL is associated with larger relative fluctuations of the intensive vs. the

extensive margin of labor (hours worked per worker vs. employment). This regularity has

already been documented by Llosa et al. (2014). It is shown in Figure 3. The vertical axis

denotes the relative standard deviation of the intensive margin vs. the extensive margin of

labor. The horizontal axis shows the OECD indicator for Protection Against Dismissal. The

black line shows the OLS fitted line based on an OLS regression in logarithms. It shows the

positive association of EPL with the relative variability of the intensive vs. extensive margin
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of labor. This finding is quite intuitive. When firing becomes more costly, firms opt to adjust

labor more strongly along the intensive margin of the labor input.

[Insert Figure 3 here]

Figure 6 is based on the data set of Ohanian and Raffo (2012), as in Llosa et al. (2014).

Ohanian and Raffo (2012) construct a quarterly data set for hours worked per worker and

total hours worked for 14 OECD countries. Their sample covers for most countries at least

50 years of data. In our analysis, we use the full sample available for each country and we

detrend the variables using the HP-filter.

II FRAMEWORK

In this section, we introduce our baseline model, which allows us to quantitatively assess the

impact of EPL. We consider a variant of the standard neoclassical growth model with labor

market frictions in the spirit of Mortensen and Pissarides (1994), endogenous separation

between workers and firms, and distinct intensive and extensive labor margin decisions. The

search and matching framework of Mortensen and Pissarides (1994) allows us to quantify the

importance of job creation and destruction flows in the analysis of EPL – a main objective

of our paper. We consider an endogenous separation choice in order to implement EPL in a

sensible way. The inclusion of distinct intensive and extensive margin decision allows us to

address the critique of Llosa et al. (2014).

The economy is inhabited by a continuum of infinitely lived identical households and a

continuum of firms. Households choose the time path of consumption to maximize lifetime

utility. Firms choose the workforce sequence to maximize profits, subject to employment

adjustment costs. Endogenous separation between employed household members (workers)

and firms arises because of job-specific productivity shocks.

Households. Following Merz (1995) and Andolfatto (1996), each household consists of

a continuum of family members of measure one. Income and risk is shared equally across the

household. The household’s lifetime utility U is:

U = E0

{ ∞∑
t=0

exp(dt)βt
(
c1−σ
t

1− σ − ξhnt
∫ ∞
ãt

ht(a)
1+ν

1 + ν

g(a)

1−G(ãt)
da− ξnnt

)}
, (II.1)
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where ct denotes average consumption per household member, nt denotes the fraction of

members that are employed, and ht(a) denotes the intensive margin, namely the number

of hours worked for a worker with job-specific productivity level a. a is drawn from a

time-invariant distribution with CDF G(a) and density g(a). Further, β ∈ (0, 1) denotes

the deterministic discount factor, dt denotes the stochastic discount factor, σ denotes the

inverse elasticity of intertemporal substitution, ξh and ξn are preference shift factors, and

ν determines the elasticity of labor supply at the intensive margin, respectively. We use

ãt to denote the threshold level of productivity below which firms and workers separate,

which we will derive and discuss in more detail later in this section. With this definition of

ãt, 1−G(ãt) denotes the fraction of job-worker pairs that engage in production (i.e. the

matches that remain productive), while G(ãt) denotes the separation rate. We assume that

each worker incurs convex disutility of hours worked of the form ξh
h(a)1+ν

1+ν . Unemployed

household members work zero hours. Based on this assumption, it follows that the average

disutility of hours worked per household member is ξhnt
∫∞
ãt

ht(a)
1+ν

1+ν
g(a)

1−G(ãt)
da. The last

term in the per period utility function reflects fixed employment costs.

Households choose consumption ct and bond holdings bt to maximize their lifetime

utility U subject to the period-by-period budget constraint:

ct + bt ≤ Rt−1bt−1 + nt

∫ ∞
ãt

wt(a)ht(a)
g(a)

1−G(ãt)
da+ tt (II.2)

where Rt is a riskless gross interest rate, the integral denotes the average labor income per

worker, and wt(a) denotes the hourly wage of a worker with skill a. The last term tt are

transfers of firms profits. Optimal consumption and savings behavior of households yields

the consumption Euler equation:

c−σt = βRtEt

[
exp(dt+1)

exp(dt)
c−σt+1

]
. (II.3)

All labor market decisions are part of the bargaining decision with firms, which are discussed

later on.

Firms and the labour market. Firms use labor services as the only input to produce

a homogeneous good. Within each firm, there is a continuum of jobs. To accommodate

endogenous separation, we follow Mortensen and Pissarides (1994) and allow for heterogeneity
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in the productivity across jobs. In particular, every period, each job is hit by a job-specific

productivity shock a. In addition, all firms are hit by a stationary aggregate productivity

shock Zt. Aggregate production then writes:

yt = nt

∫ ∞
ãt

Ztht(a)a
g(a)

1−G(ãt)
da. (II.4)

The integral denotes the average product per worker that engages in production. Each worker

with job-specific productivity a > ãt contributes Ztht(a)a to overall production. Workers

with a < ãt are separated before production takes place, even if the match is new.

Job creation is subject to matching frictions and depends on aggregate labor market

conditions and the hiring effort of firms. The aggregate flow of new matches in period t− 1

is given by the matching function m(ut−1, vt−1) = Buµt−1v
1−µ
t−1 , where B is the matching

efficiency, ut−1 = (1− nt−1) is the number of unemployed household members, and vt−1 is

the number of vacancies. New matches in period t− 1 enter the workforce of a firm in the

beginning of period t, before production takes place and before the job-specific productivity

shock a realizes. The probability that a vacancy is filled is given by q(θt) = m(ut,vt)
vt

= Bθ−µt ,

where θt ≡ vt
ut

denotes the labor market tightness. The aggregate law of motion of employment

is given by:

nt = (1− jdrt)(nt−1 +mt−1), (II.5)

where we use jdrt = G(ãt) to denote the endogenous job destruction rate (as all job-worker

pairs with a draw a < ãt are separated, irrespective of whether they are existing matches

nt−1 or new matches mt−1). The job creation rate jcrt is defined as the fraction of new

workers in the workforce in the beginning of period t: jcrt = mt−1/(nt−1 +mt−1).

Firms can influence the workforce through two margins, either via vacancy posting or

firing. The firm’s optimization problem is to choose vacancies vt, employment nt and the

threshold productivity level ãt to maximize the current market value of profits P subject to the

law of motion of employment (II.5) and taking wages and the probability of filling a vacancy

as given. Profits are composed of production net of wage payments nt
∫∞
ãt
wt(a)ht(a)

g(a)
1−jdrt ,
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hiring costs ψΓt, and the payment of a fixed cost F per firing:

P = E0

{ ∞∑
t=0

exp(dt)βtλt
[
yt − nt

∫ ∞
ãt

wt(a)ht(a)
g(a)

1− jdrt
da−ψΓt −

jdrtnt
1− jdrt

F

]}
.

(II.6)

The hiring cost function is in the spirit of Yashiv (2000a) and takes the following form

ψΓt = ψ
(φvt + (1− φ)mt)

2

2 ȳt. (II.7)

Total hiring costs ψΓt are a quadratic function of a weighted average of the number of

vacancies and new matches, where φ is the relative weight given to vacancies. The costs

are measured in terms of aggregate output ȳt, which the firm takes as given. In the work

by Yashiv (2000a, 2000b, 2006) and Merz and Yashiv (2007) they suggest that a convex

hiring cost function like the one in (II.7) offers a better fit in capturing costs such as the

advertising of vacancies, the screening of candidates, or the training of new workers. For the

expression of profits P , we use (II.5) to rewrite the amount of firings ft = jdrt(nt−1 +mt−1)

to jdrtnt
1−jdrt . We assume firing costs F are wasteful, in the sense that they are not redistributed.

The firing costs also apply to separations from new matches. In section V.II we solve an

alternative model, where new matches can be dismissed at no cost.

The first-order conditions of the firm problem are:

δnt : τt =
yt
nt
−
∫ ∞
ãt

wt(a)ht(a)
g(a)

1− jdrt
da− jdrt

1− jdrt
F + βE

{
τt+1

exp(−dt+1)

exp(−dt)
λt+1
λt

(1− jdrt+1)

}
(II.8)

δvt :
ψΓ′t,v
q(θt)

= βE

{
exp(−dt+1)

exp(−dt)
λt+1
λt

(1− jdrt+1)τt+1

}
(II.9)

δãt : τt =
yt
nt
−Ztht(ãt)ãt −

∫ ∞
ãt

wt(a)ht(a)
g(a)

1− jdrt
da+wt(ãt)ht(ãt)−

1
1− jdrt

F

(II.10)

where τt denotes the marginal value of employment (it is the Lagrange multiplier on the law

of motion of employment) and Γ′t,v is a short notation for ∂Γt
∂vt

. Combining equations (II.8)
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and (II.9) yields the job creation condition:

ψΓ′t,v
q(θt)

= βE

{
exp(−dt+1)

exp(−dt)
λt+1
λt

[
(1− jdrt+1)

(
yt+1
nt+1

−
∫ ∞
ãt+1

wt+1(a)ht+1(a)
g(a)

1− jdrt+1
da+

ψΓ′t+1,v
q(θt+1)

)
− jdrt+1F

]} (II.11)

Condition (II.11) states that in equilibrium, the cost of filling a vacancy (left-hand-side)

must equal the expected return on a vacancy (right-hand-side). With probability 1− jdrt+1,

the firm does not separate from the worker – then the return is the additional production

plus the continuation value of the filled vacancy, net of wage payments. With probability

jdrt+1 firm and worker separate, and the firm pays the firing cost F . The higher firing costs,

the lower are the incentives to post a vacancy, as firms take into account that firing will later

be costly.

Combining conditions (II.8)–(II.10) implicitly defines the optimal productivity threshold

ãt:

wt(ãt)ht(ãt) = Ztht(ãt)ãt +
ψΓ′t,v
q(θt)

+ F . (II.12)

Equation (II.12) states that in equilibrium, the benefits of firing the marginal worker (i.e.

the worker with job-specific productivity ãt) must equal its costs. The benefits correspond

to saved wage payments wt(ãt)ht(ãt). The costs are composed of lost production, the value

of posting a new vacancy (which equals the missed out expected return of a filled vacancy,

see (II.11)), and the payment of the firing cost F .

Wage and hours bargaining. Each firm-worker match generates a rent St(a), which

is split in individual Nash bargaining. In every period firms and workers bargain over the

hourly wage payment wt(a) and hours worked ht(a) by solving:

[wt(a),ht(a)] = argmax
(
SWt (a)

)ζ (
SFt (a) + F

)1−ζ
, (II.13)

where SWt denotes the worker’s surplus, SFt is the firm’s surplus, and ζ ∈ (0, 1) denotes the

worker’s relative bargaining power. Importantly, the firing cost F has to be included in the

bargaining problem. The firing cost weakens the position of the firm and hence reduces the

firm’s threat point. The total surplus of a match is defined as St(a) ≡ St(a)W + St(a)F + F .
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The worker’s surplus SWt (a) corresponds to the difference between the household’s asset

value of being employed and unemployed, SWt (a) = Et(a)−Ut. The relevant objects write:

Et(a) =wt(a)ht(a)−
1
λt

(
ξh
ht(a)1+ν

1 + ν
+ ξn

)
+ βEt

{
exp(−dt+1)

exp(−dt)
λt+1
λt

. . .(
(1− jdrt+1)

∫ ∞
ãt+1

Et+1(a)
g(a)

1− jdrt+1
da+ jdrt+1Ut+1

)} , (II.14)

Ut =βEt

{
exp(−dt+1)

exp(−dt)
λt+1
λt

[
θtq(θt) . . .(

(1− jdrt+1)

∫ ∞
ãt+1

Et+1(a)
g(a)

1− jdrt+1
da+ jdrt+1Ut+1

)
+ (1− θtq(θt))Ut+1

]}
.

(II.15)

The value of being employed (II.14) depends on job-specific productivity and is composed of

the wage payment, the disutility of work, and the probability-weighted continuation value of

staying employed or becoming unemployed. The asset value of being unemployed in (II.15)

is identical for all unemployed household members. It is given by the probability-weighted

continuation value of remaining unemployed or finding a job. In particular, 1− θtq(θt)

denotes the probability of remaining unemployed, and θtq(θt) denotes the probability of

being matched with a firm. In the latter case, we further need to distinguish two cases:

With probability jdrt+1 the match is separated before production takes place, while with

probability 1− jdrt+1 the match remains intact.

The firm surplus SFt (a) corresponds to the difference between the asset value of a filled

job and a vacancy, SFt (a) ≡ Jt(a)−Vt. The relevant objects write:

Jt(a) =Ztht(a)a−wt(a)ht(a) + βEt

{
exp(−dt+1)

exp(−dt)
λt+1
λt

. . .(
(1− jdrt+1)

∫ ∞
ãt+1
Jt+1(a)

g(a)

1− jdrt+1
da+ jdrt+1(Vt+1 − F )

)}, (II.16)

Vt =−ψΓ′t,v + βEt

{
exp(−dt+1)

exp(−dt)
λt+1
λt

[
q(θt)

(
(1− jdrt+1) . . .∫ ∞

ãt+1

Jt+1(a)
g(a)

1− jdrt+1
da+ jdrt+1(Vt+1 − F )

)
+ (1− q(θt))Vt+1

]}
.

(II.17)

The value of a job Jt(a) defined in (II.16) consists of the revenue, the wage payments, and

the probability-weighted continuation value of either keeping a job or having a vacancy. With

probability 1− jdrt+1, the job remains active, and with probability jdrt+1 it becomes a
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vacancy and firing costs have to be payed. The asset value of a vacancy Vt defined in (II.17)

is depends on the cost of posting a vacancy and the probability-weighted continuation value

of the filled or open vacancy. The vacancy remains unfilled with probability 1− q(θt) and

becomes filled with probability q(θt). In the latter case, the match may immediately separate

(probability jdrt+1) at the cost F or remain active (probability 1− jdrt+1). Importantly,

since we assume perfect competition and free entry, the value of a vacancy Vt is zero in

equilibrium.

To obtain optimal hours worked and wage, we can solve the Nash bargaining using

equations (II.14)–(II.17). We obtain:

ht(a) =

(
Ztλta

ξh

) 1
ν

, (II.18)

wt(a)ht(a) =
1− ζ
λt

(
ξh
ht(a)1+ν

1 + ν
+ ξn

)
+ ζ

(
θtψΓ′t,v + Ztht(a)a

+

(
1− (1− θtq(θt))βEt

{
exp(−dt+1)

exp(−dt)
λt+1
λt

})
F

)
.

(II.19)

According to (II.18), the optimal hours decision increases with aggregate and job-specific

productivity and the marginal value of a unit of wealth (captured by λ). Condition (II.19)

states that the individual wage payment increases with higher hours worked, higher job-

specific and aggregate productivity, tighter labor markets, and higher marginal hiring costs

of posting an additional vacancy. Individual wage payments also increase with higher firing

costs given (1− θtq(θt))βEt

[
exp(−dt+1)

exp(−dt)
λt+1
λt

]
< 1, which is the case as long as consumption

is relatively smooth.

Equations (II.18) and (II.19) are expressed in terms of job-specific productivity a. Weight-

ing with the distribution of idiosyncratic productivity, we obtain the following expressions of

average hours worked per worker Ht(ãt) and average labor income per worker:

Ht(ãt) =

(
Ztλt
ξh

) 1
ν
∫ ∞
ãt

a
1
ν

g(a)

1− jdrt
da, (II.20)∫ ∞

ãt

wt(a)ht(a)
g(a)

1− jdrt
da =(1− ζ) 1

λt

(
ξh

∫ ∞
ãt

ht(a)1+ν

1 + ν

g(a)

1− jdrt
da+ ξn

)
+ ζ

(
yt
nt

+ θtψΓ′t,v

+

(
1− (1− θtq(θt))βEt

[
exp(−dt+1)

exp(−dt)
λt+1
λt

])
F

)
.

(II.21)
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Combining equations (II.12), (II.18), and (II.19) delivers an explicit expression for the

job destruction threshold:

ãt =


ξn
λt

+ ζ
1−ζ θtψΓ′t,v − 1

1−ζ
ψΓ′t,v
q(θt)

−
(

1 + ζ
1−ζ (1− θtq(θt))βEt

[
exp(−dt+1)

exp(−dt)
λt+1
λt

])
F

Z
1+ν
ν

t

(
λt
ξh

) 1
ν


ν

1+ν

(II.22)

Condition (II.22) shows that firing costs reduce the productivity threshold ãt. The intuition

for this result is clear: As firing becomes costly, firms become more reluctant to separate,

and less productive jobs remain intact.

Equilibrium and model solution. In equilibrium, all markets clear. The aggregate

resource constraint is given by:

yt = ct + ψΓt +
ntjdrt

1− jdrt
F . (II.23)

To close the model, we assume that a follows a log-normal distribution with standard

deviation σa and mean µa = −σ2
2 (E[a] = 1). The aggregate productivity shock Zt

and the stochastic discount factor shock dt both follow an AR(1) process of the form

ln(Zt) = ρz ln(Zt−1) + εz, εz ∼ N(0,σ2
z ) and dt = ρddt−1 + εd, εd ∼ N(0,σ2

d). While the

aggregate productivity shock process is standard in the literature, shocks on the discount

factor are not considered as often. We consider discount factor shocks because of the recent

contribution by Hall (2017). Hall (2017) argues that business cycle variation in financial

discounts plays an important role for unemployment fluctuations. In particular, he observes

that in the data, discount rates implicit in stock markets are strongly positively correlated

with unemployment. This finding is in line with the standard Mortensen and Pissarides

(1994) model: From the employer’s perspective, an increase in the discount rate reduces the

net present value of the benefit of hiring a new worker. In turn, the lower incentives to create

jobs lead to an increase in unemployment.

Appendix Section A contains an overview of all conditions that characterize the equilibrium

of this economy. To solve the model, we first log-linearize the general equilibrium equations
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around the non-stochastic steady state. We then apply standard techniques for solving linear

rational expectation models.

III CALIBRATION AND FIT

We now turn to the model calibration and examine its empirical performance. In our

calibration exercise, we use the US as a benchmark country and calibrate our model to

capture the most salient features of the US business cycle. Then, we simulate our model for a

range of firing costs that is meant to capture the different EPL frameworks across countries.

With this simulations we compute the model implied relationship between EPL and labour

market dynamics. We choose the range of firings costs such that our model is best able to

replicate the empirical EPL relationships we documented in Section I.

III.I Calibration and parametrization

Table 2 summarizes the calibration and parametrization values for the theoretical model. The

discount rate β matches an annual real rate of 4%. We set the constant relative risk aversion

parameter to 0.5, which represents an intermediate value between (1) the risk neutrality

assumption used for instance in Shimer (2005), Hall (2005), Hagedorn and Manovskii (2008),

or Pissarides (2009), and (2) the logarithmic utility case considered in Merz (1995) or

Andolfatto (1996). We set the hours disutility curvature parameter ν equal to 1. Because

ν has potentially a strong impact on the labor market dynamics, we consider different

parameterizations of ν in our robustness section V. Regarding the matching function, we set

the matching elasticity µ to 0.4, in line with empirical estimates by Blanchard and Diamond

(1989). The matching efficiency B implies a quarterly probability of filling a vacancy of 0.9,

in line with Merz (1995) and Andolfatto (1996). The bargaining power of workers ζ is set to

ensure the Hosios (1990) condition, i.e. ζ = µ. Following Sedlácek (2014), the variance of the

job-specific productivity shock σa is 0.155. The hiring cost scale parameter ψ and preference

shift parameters ξh and ξn are chosen to imply (1) a steady state separation rate of 0.1 in

line with the evidence presented in Shimer (2005), (2) a steady state intensive margin of 0.33

in line with average hours worked from Ohanian and Raffo (2012), and (3) a steady state

unemployment rate of 0.1. As in Krause and Lubik (2007), we choose an unemployment

rate which is higher than in the data to allow for participants in the matching market that

are not registered as unemployed. The persistence of the technology shock process ρz is
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estimated using linearly detrended data on utilization-adjusted total factor productivity

(TFP), constructed as in Fernald (2014). We obtain ρz = 0.95. In line with Albertini and

Poirier (2014), we assume ρd = 0.75.

We then calibrate σd relative to σz by minimizing the equally weighted distance between

standard business cycle moments implied by the model and the data (namely, standard

deviations of vacancies, unemployment, hours worked, employment and output, and the

correlation between unemployment and vacancies)The weighting parameter for the hiring

cost function φ is calibrated together with the standard deviations of the shock processes to

minimize the difference between the aforementioned moments. Finally, in our benchmark

calibration, we set the firing cost parameter F = 0 to replicate the low EPL in the US. In

table 3 we show the results of the calibration and compare it to the US-data.

Table 2: Model parameters

Parameter Role Value
Preferences

β Discount rate 0.99
σ CRRA 0.5
ν Hours disutility curvature 1
ξh Preference shift parameter 5.6012
ξn Preference shift parameter 0.2543

Matching, bargaining, separation, hiring and firing costs

B Matching efficiency 0.94
µ Match elasticity 0.40
ζ Bargaining power 0.40
σa Standard deviation a 0.155
ψ Hiring cost scale parameter 1.0587
φ Hiring cost weighting parameter 0.4158
F Firing costs [0; 0.0406]

Shock processes: technology shock (Z) and discount factor shock (d)

Z̄ Steady state 1
ρz Persistence 0.95
σz Standard deviation 0.0066
d̄ Steady state 1
ρd Persistence 0.75
σd Standard deviation 0.5527
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III.II Model-fit with US Data

We now examine to what extent our calibrated model can fit key US business cycle moments.

Table 3: Data moments vs. model moments (HP-filtered)

Data Model

σ(v)/σ(n) 11.90 10.75
σ(u)/σ(n) 10.96 9.00
σ(h)/σ(n) 0.38 0.33
σ(n)/σ(y) 0.80 0.88
corr(v,u) -0.92 -0.90
σ(jcr)/σ(jdr) 0.68 0.48

Table 3 summarizes standard US business cycle moments (first column) and the model-

implied moments (second column). The data moments are taken from Krause and Lubik

(2014), Ohanian and Raffo (2012) and the CompNet database. The data is in logs and HP-

filtered with the exception of the job creation and job destruction rate. For these two variables

the time-series is too short to apply the HP filter and obtain reliable results. The table shows

that the model does a very good job, matching these moments. It is able to solve the Shimer

puzzle (Shimer, 2005), that is it is able to generate a high volatility in unemployment and

vacancies and generates a strong negative correlation between unemployment and vacancies.

Further it replicates the fluctuations in the job creation vs. job destruction rate, which is

not part of the calibration but of particular interest in our analysis.

III.III Model-fit with Empirical EPL Relations

We now turn our focus on the empirical regularities presented in Section I. Figures 4, 5 and

6 show that our model is able to replicate the empirical relationships with EPL presented in

Section I well. Figure 4 shows the relationship between the relative variability of the job

creation vs. job destruction rate, 5 the relationship between the Beveridge curve, and 6 the

relationship between the relative variability of the intensive vs. extensive margin of labor

with EPL or firing costs. The black lines correspond to the fitted OLS lines of the empirical

relationships presented in Section I. The red lines show the models implied relationship

between the variables at interest and the firing cost parameter F . We obtain the red line by

solving the model for different values of the firing cost parameter, while keeping the other

parameters constant. More precisely, we consider a range F = [0,Fmax], which we then
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linearly map to the OECD indicator. We calibrate Fmax such that our model is best able

to replicate the empirical relationships with EPL. That is, we choose Fmax to minimize the

sum of the squared deviations between the red and black lines. This procedure yields an

Fmax of 0.0406, roughly 11% of steady state wage payments.

[Insert Figure 4 here]

[Insert Figure 5 here]

[Insert Figure 6 here]

IV THE UNDERLYING MECHANISM

In this section, we discuss the firing cost mechanism of our model in detail. The purpose is

to better understand our models ability to replicate the empirical relationships with EPL

and the role distinct job creation and destruction choices play for the mechanism. First,

we analyze the response of first and second moments to an increase in EPL. Second, we

compare the benchmark model to an economy in which firing costs apply to net reductions

in employment instead of job destruction flows.

IV.I The effect of firing costs

To illustrate the firing cost mechanism, we analyze the effect of an increase in the firing cost

parameter F from 0 to Fmax (11% of steady state average wage payments) on the model’s

first and second moments.

Steady State. Table 4 shows the effect of an increase in firing costs on the steady state

of output, employment, average hours worked per employee, the number of vacancies posted,

unemployment and both the job creation and job destruction rate.

The table shows that firing costs have a strong influence on the job destruction rate ¯jdr,

dropping by almost 80%. This reduction is fairly intuitive, as the increased firing costs make

it less attractive for firms to dismiss less productive workers. Firing costs reduce the job cre-

ation rate ¯jcr by the same amount. The drop in the job creation rate goes hand in hand with

the lower amount of vacancies posted v̄. The lower amount of vacancies posted is the result

of several mechanisms, as described in equation (II.11). On the one hand, raising firing costs
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Table 4: Steady State to Firing Cost Relation

F = 0% F ≈ 11% ∆ in %

ȳ 0.31 0.32 2.07%
n̄ 0.90 0.96 6.92%
h̄ 0.33 0.32 -3.04%
v̄ 0.11 0.02 -82.83%
ū 0.10 0.04 -62.29%
¯jcr 0.11 0.02 -78.00%
¯jdr 0.11 0.02 -78.00%

Note: The last column shows the percent-
age change after an increase from F = 0
to F = Fmax

has a direct negative impact on the expected return on a vacancy because every filled vacancy

leads to a future firing. At the same time, firing costs weaken the firms bargaining position

and lower the revenue a firm gets net of wage payments. Furthermore, the reduction in the

separation rate reduces the average productivity of a worker because less productive workers

remain at the firm. In contrast, the lower separation rate implies longer lasting employment

relationships, which raises incentives to post vacancies. In steady state, the former effects

outweigh the latter. Firing costs reduce steady state average hours worked h̄ and raise the

steady state employment rate n̄. The reduction in average hours worked can be explained by

the effect of firing costs on the job destruction rate: As firing costs lead firms to lower the sep-

aration rate, workers with lower productivity remain at the firm. The lower the productivity

of a worker, the lower is the optimal amount of hours worked (see equation (II.18)). In turn,

the decrease in average hours worked reduces the average disutility of being employed. The

lower average disutility leads to lower average wage payments per worker, which raises firms’

demand for workers and hence steady state employment. The higher steady state employment

is equivalent to lower steady state unemployment ū. Overall, the higher employment level

outweighs the reduction in average hours worked and the economic output ȳ increases slightly.

Business cycle fluctuations.

Table 5 shows the effect of firing costs on various second moments, measured based on

HP-filtered simulations. Similar to the previous table the firing costs are increased from 0%

to approximately 11% of steady state average wage payments per worker.
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Table 5: Second Moments to Firing Cost Relation

F = 0% F ≈ 11% ∆ in %

σ(y) 1.63 1.21 -25.68%
σ(n) 1.43 0.30 -78.68%
σ(h) 0.47 0.29 -38.33%
σ(v) 15.36 15.32 -0.27%
σ(u) 12.86 7.78 -39.54%
σ(jcr) 0.40 0.17 -57.64%
σ(jdr) 0.83 0.15 -81.47%

corr(v,u) -0.90 -0.69 -22.69%
σ(n)
σ(jdr)

1.73 1.99 15.06%
σ(jcr)
σ(jdr)

0.48 1.10 128.55%
σ(h)
σ(n)

0.33 0.96 189.19%

Note: The standard deviations (σ(.)) are based
on HP-filtered simulations. The last column
shows the percentage change after an increase
from F = 0 to F = Fmax

Several observations stand out. First, firing costs reduce fluctuations in the job destruction

as well as the job creation rate. For the job destruction rate, the reason is immediate -

firing costs discourage firings and firms focus on dismissing the most unproductive workers

only. The reduction in the job creation rate is driven by two effects. First, creating new

positions, will in later periods, lead to costly firing. Second, the decreased variation in the

job destruction rate leads to a more stable average productivity of workers. From (II.11) we

see that this stabilizes the creation of jobs. Quantitatively, firing costs stabilize more strongly

the job destruction than the job creation rate. Hence, our model implies a positive relation

between firing costs and the relative standard deviation of the job creation vs. job destruction

rate (σ(jcr)/σ(jdr)), as shown in Figure 4 in the previous section. This result is intuitive.

If firing taxes increase the costs of dismissal, firms opt to adjust the number of employees

more strongly along the hiring than the firing margin. Second, as already shown in Figure

5 in the previous section, firing costs weaken the negative correlation between vacancies

and unemployment. The reason for this relationship is easiest understood when we consider

the impulse response shown in Figure 7 and 8. Firing taxes lead to a more hump-shaped

reaction of unemployment to discount factor and technology shocks. The intuition for this

more delayed reaction of unemployment is as follows. Firms can adjust employment either
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using the hiring or the firing margin. While firing workers affects immediately the workforce,

the workforce only reacts with a delay to changes in the number of posted vacancies. An

increase in firing costs leads firms to adjust employment more strongly along the hiring

margin, leading to a more delayed response of unemployment in response to shocks. Hence,

firing costs weaken the contemporaneous correlation between unemployment and vacancies.

[Insert Figure 7 here]

[Insert Figure 8 here]

The third observation is that firing costs reduce fluctuations in average hours worked and

employment. The stabilization of average hours worked follows directly from the more stable

job destruction rate. As can be seen in (II.20), the more stable job destruction rate also

reduces fluctuation in the average productivity of workers, which, in turn, leads to less

variation in average hours worked. The stabilizing impact of firing costs on employment

follows directly from the stabilizing effect of firing costs on the job destruction and creation

rate. Quantitatively, firing costs reduce the variability in employment more strongly than the

variability in average hours worked (higher σ(h)/σ(n)). This relationships, which we have

already shown in Figure 6 in the previous section, is also quite intuitive. When dismissing

workers becomes more costly, firms opt to adjust their labor input more strongly along the

intensive rather than the extensive margin.

IV.II The role of the job creation and destruction margin

To evaluate the role of the job creation and destruction margin, we compare our model to

a version in which firing costs apply only to net reductions in employment instead of job

destruction flows. Details can be found in Section B in the Appendix. Under this alternative

modeling approach of EPL, the job creation and destruction flows do not (directly) matter

for the impact of firing costs. In this sense, the comparison between both models reveals the

(direct) role of job creation and destruction flows for the assessment of EPL.

Table 6 compares the impact of firing costs for both versions of our model. We focus on

the impact of firing costs on labour market dynamics. Further information on the impact

on the steady state can be found in section B.III of the appendix. The table shows that in

contrast to our baseline model, imposing firing costs of size F = Fmax has almost no impact

in the alternative version of our model (second column from right in Table 6). The reason is
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that in our baseline model, like in the US data, average net reductions in employment are

much smaller in size than average job destruction flows. Hence, everything else equal, the

same increase in F imposes much smaller effective firing costs in the alternative model.

Table 6: Standard Deviation to Firing Cost Relation

Baseline Model Alternative Model
∆F = Fmax ∆F = Fmax ∆F = 30 ∗ Fmax

σ(y) -25.68% -1.24% -25.01%
σ(n) -78.68% -2.82% -70.02%
σ(h) -38.33% -1.15% -36.63%
σ(v) -0.27% -0.08% -4.72%
σ(u) -39.54% -1.24% -52.31%
σ(jcr) -57.64% 0.09% 28.97%
σ(jdr) -81.47% -1.94% -36.90%

corr(v,u) -22.69% 0.02% -11.28%
σ(n)
σ(jdr)

15.06% -0.90% -52.49%
σ(jcr)
σ(jdr)

128.55% 2.07% 104.38%
σ(h)
σ(n)

189.19% 1.72% 111.37%

Note: The standard deviations (std.) are based on HP-filtered
simulations. ∆F refers to an increase from F = 0 to the indi-
cated value.

Not only the effective size of firing costs differs among the different modeling approaches.

Also the impact of firing costs on labor market dynamics is different. To show this assertion,

we perform the following exercise. We compare the impact of firing costs for an increase

from F = 0 to F = Fmax in the baseline model (first column in the table) with the impact

from an increase from F = 0 to F = 30 · Fmax in the alternative model (last column in the

table). We choose the factor 30 because at F = 0 in our model, average net reductions in

employment are about 30 times smaller in size than average job destruction flows (like in the

US data). Hence, with this exercise we make sure that, everything else equal, the effectively

imposed size of firing costs for firms is the same in both models. In other words, we control

for the different size effect of firing costs. When doing this exercise, three differences stand

out. First, the relative variability of employment vs job destruction flows (σ(n)/σ(jdr)) is

dampened rather than amplified in the alternative model. This finding is quite intuitive

because firing costs apply to net reductions in employment, not job destruction flows. Second,

the relative volatility of job creation vs destruction flows (σ(jcr)/σ(jdr)) is raised less in the
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alternative model. The intuition is that firing costs do not incentivize firms directly to use the

hiring margin to adjust employment. Third, firing costs lead to a stronger rise in the relative

variability of hours worked vs. employment (σ(h)/σ(n)) in the baseline model. The reason

is that for an immediate adjustment in labor input, firms need to adjust either the amount

of hours worked per person or the amount of destroyed jobs. Firing costs discourage directly

the use of the latter margin in the baseline model whereas they only affect indirectly the job

destruction margin in the alternative model. Hence, in face of firing costs of a comparable

size, firms opt to adjust labor input even more heavily along the intensive margin in the

baseline model. To sum up, the distortionary effects of firing costs on labor market dynamics

are underestimated when job destruction flows are disregarded in the assessment of EPL.

V ROBUSTNESS

We finish the main body of this paper by assessing the robustness of our results with regard

to alternative parameterization of the hours disutility curvature parameter ν and a different

modeling of EPL.

V.I Different parameterizations of hours disutility curvature parameter ν

The hours disutility curvature parameter ν determines how strongly households are willing

to adapt hours worked per worker. Hence, the parameter choice is potentially crucial for

the labor market dynamics in our model. We consider two alternative values for the hours

disutility curvature parameter: ν = 2, which corresponds to a low willingness to adapt

hours worked per worker, and ν = 0.5, which corresponds to high willingness to adapt hours

worked per worker. To compute the results, we use the same calibration approach as in our

benchmark model, except that we use the same range of firing costs as in the benchmark

case. Table 7 and 8 shows the effect of firing costs on various second moments. The effect of

firing costs on the steady state can be found in Section C in the appendix.

Overall, for ν = 2, the impact of firing costs on the economy is remarkably similar to the

benchmark model. The main difference is that the relative variability of hours worked vs.

employment is raised much less compared to benchmark. This is intuitive and follows directly

from the increased disutility, which workers face from additional working hours. Workers

demand a higher wage increase for additional working hours. Hence, firms opt to adjust

total labor input more strongly along the extensive labor margin. The weaker response of
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Table 7: Second Moments to Firing Cost Relation: Robustness check for ν = 2

F = 0% F ≈ 11% ∆ in %

σ(y) 1.64 1.05 -35.87%
σ(n) 1.57 0.48 -69.16%
σ(h) 0.31 0.16 -49.42%
σ(v) 14.86 15.59 4.94%
σ(u) 14.13 9.54 -32.52%
σ(jcr) 0.37 0.20 -44.30%
σ(jdr) 0.88 0.21 -75.54%

corr(v,u) -0.89 -0.71 -20.65%
σ(n)
σ(jdr)

1.79 2.26 26.07%
σ(jcr)
σ(jdr)

0.42 0.96 127.73%
σ(h)
σ(n)

0.20 0.32 64.02%

Note: The standard deviations (std.) are based
on HP-filtered simulations. The last column
shows the percentage change after an increase
from F = 0 to F = Fmax

Table 8: Second Moments to Firing Cost Relation: Robustness check for ν = 0.5

F = 0% F ≈ 11% ∆ in %

σ(y) 1.50 1.25 -16.49%
σ(n) 1.18 0.10 -91.36%
σ(h) 0.60 0.47 -22.19%
σ(v) 16.21 15.04 -7.26%
σ(u) 10.64 5.19 -51.19%
σ(jcr) 0.48 0.11 -76.45%
σ(jdr) 0.78 0.10 -87.50%

corr(v,u) -0.91 -0.12 -86.30%
σ(n)
σ(jdr)

1.52 1.05 -30.93%
σ(jcr)
σ(jdr)

0.61 1.16 88.35%
σ(h)
σ(n)

0.51 4.56 801.12%

Note: The standard deviations (std.) are based
on HP-filtered simulations. The last column
shows the percentage change after an increase
from F = 0 to F = Fmax

the intensive margin of labor has also consequences for other labor market aggregates. But

quantitatively, this influence is rather minor. For the case with ν = 0.5, the effects of firing

costs are qualitatively also the same as in the benchmark model. However, quantitatively,

we observe stronger differences. In particular firing costs raise the relative variability of the
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intensive vs extensive margin of labor much stronger than in the benchmark model. The

smaller disutility that workers face with additional working hours allows the firms to reduce

the fluctuations in employment level more strongly and use the intensive margin more heavily

to adjust total labor input. Further we find that the correlation between unemployment

and vacancies is decreasing much stronger in absolute terms. The main reason is that firing

costs lead to a stronger reduction in the use of the job destruction margin than in the

benchmark model. The weaker the use of the job destruction margin, the more persistent is

the development of unemployment and, hence, the lower the contemporaneous correlation

between vacancies and unemployment.

Figures 9 and 10 show the fit with the empirical EPL relations presented in Section

III.III. Overall, the fit remains relatively well for both alternative parameterizations of the

willingness to adapt hours per worker. Only the fit with the empirical relationship between

EPL and the relative variability of the intensive vs. extensive margin is more sensitive to the

chosen ν. For ν = 2, firing costs raise the relative variability of the intensive vs. extensive

margin too little, while for ν = 0.5, firing costs raise the relative variability too much. The

fit with the empirical relationsships between EPL and relative variability of the job creations

vs destruction margin, and between EPL and the correlation of vacancies and unemployment

remains well irrespective of the chosen parameterization of ν.

[Insert Figure 9 here]

[Insert Figure 10 here]

To summarise, we find that the qualitative results of our benchmark model remain

unchanged for different parameterizations of the households willingness to adapt hours

worked per workers. In all chosen parameterizations, firing costs (i) raise the relative

variability of the job creation vs job destruction rate, (ii) weaken the Beveridge curve relation

measured as the negative correlation between vacancies and unemployment, and (iii) increase

the relative fluctuations in the intensive vs extensive margin of labor supply. Quantitatively,

especially the relative fluctuations of the intensive vs extensive margin are more sensitive to

the chosen value of ν, with the benchmark parameterization leading the best fit with the

observed empirical relationship documented in Section I.III.
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V.II Different Dismissal Procedure

Our main interest in this paper is the effect of EPL on labour market dynamics. In this

regard, a natural question is to what extent our modeling approach of EPL affects the results.

In this section, we examine a different formulation of the firing cost mechanism. In contrast

to our baseline model, we allow for firms to dismiss workers at no dismissal cost if the worker

has just matched with the firm in the previous period and has not yet participated in the

firm’s production process. The details of the model and more results can be found in the

appendix Section D. To calibrate the model, we use the same calibration approach as for

our benchmark model, except that we use the same range of firing costs considered in our

benchmark.

Table 9 shows the effect of an increase in firing costs on various second moments. The

impact of firing costs is remarkably similar to our benchmark model. The only major

difference concerns the increase in the variability of vacancies. In the benchmark model, the

variability of vacancies remains roughly unchanged when firing costs are introduced. The

intuition is that hiring is less risky when firms can dismiss new employees at no dismissal

cost. Hence, a rise in firing costs leads firms to adjust employment more strongly along the

job creation margin.

Table 9: Second Moments to Firing Cost Relation: Robustness Check for Different Dismissal
Procedure

F = 0% F ≈ 11% ∆ in %

σ(y) 1.48 1.19 -19.17%
σ(n) 1.35 0.27 -80.36%
σ(h) 0.49 0.22 -55.01%
σ(v) 4.26 6.22 45.94%
σ(u) 12.18 6.53 -46.42%
σ(jcr) 0.49 0.15 -68.91%
σ(jdr) 0.88 0.16 -81.94%

corr(v,u) -0.76 -0.60 -21.59%
σ(n)
σ(jdr)

1.54 1.68 8.71%
σ(jcr)
σ(jdr)

0.56 0.96 72.11%
σ(h)
σ(n)

0.36 0.84 129.12%

Note: The standard deviations (std.) are based
on HP-filtered simulations. The last column
shows the percentage change after an increase
from F = 0 to F = Fmax
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Also the fit with the empirical EPL relations documented in Section III.III remains well.

This can be seen in Figure 11. The main difference is that the effect of an increase in firing

costs on the considered measures is a bit weaker at lower levels of the firing cost. Intuitively,

as the firing cost only applies for workers that have been with the firm for at least one full

period, the effect is smaller in size and, hence, has a smaller impact on the firms decision

making. Therefore, the effect of firing cost is weaker and only becomes visible once the EPL

have reached a certain level.

[Insert Figure 11 here]

To summarize, the results are robust to the different model specification. The qualitative

outcomes that firing costs (i) raise the relative variability of the job creation vs job destruction

rate, (ii) weaken the negative correlation between vacancies and unemployment, and (iii)

increase the relative fluctuations in the intensive vs. extensive margin of labor supply remain

intact. Further, the model with the alternative firing cost mechanism is still able to fit the

empirical relationships documented in Section III.III.

VI CONCLUDING REMARKS

We explore the role of employment protection legislation (EPL) on labor market dynamics in

a search and matching framework with costly firing. While the literature has mostly focused

on the role of EPL in the long-run, we are mainly interested in labor market dynamics

at business cycle frequencies. Our focus lies on the role of job destruction flows for the

assessment of EPL – a dimension along which the literature has remained vastly silent or

has even abstracted from.

Our contribution is threefold. First, we establish novel empirical regularities regarding

labor market dynamics and their relationship with EPL. Based on the recently-constructed

6th vintage of the ECB’s CompNet data set and the business dynamics database of the US

census bureau, we document that job destruction flows are between 5 to 40 times larger than

average net reductions in employment. The same data set also suggests a positive association

between EPL – measured by the OECD indicator for protection against dismissals – and the

relative variability of job creation vs. destruction flows. Further, based on the data set of

Amaral and Tasci (2016), we find that the higher EPL is, the weaker is the Beveridge curve

as measured by the negative correlation between vacancies and unemployment.
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Second, we provide a search and matching model for the quantitative assessment of EPL

that captures salient features of the data. It is able to replicate standard US business cycle

facts and the empirical regularities between EPL and labor market aggregates documented

in our empirical section. Further, our model reproduces the positive association between

EPL and the relative variability of the intensive vs. extensive margin of labor supply (hours

worked per workers vs. employment) reported by Llosa et al. (2014).

Third, we examine the role of job destruction flows for the quantitative assessment of

firing costs in our search and matching model. To do so, we compare two versions of our

model. In our baseline version, firing costs apply to job destruction flows whereas in the

alternative version, firing costs apply only to net reductions in employment. Hence, in the

alternative version, job destruction flows do not (directly) matter for the amount of firing

costs a firm faces. The main findings are as follows. (i) The impact of the same size of firing

costs is an order of magnitude larger when firing costs apply to job destruction flows instead

of net reductions in employment. (ii) Even when controlling for this “size effect”, firms opt

to adjust labor input more heavily along the job creation margin and the intensive margin of

labor when EPL applies to job destruction flows. Hence, the distortionary effects of firing

costs on labor market dynamics are underestimated if job destruction flows are disregarded

in the analysis of EPL.

Overall, our findings indicate that role of job destruction flows should be considered in

any model that studies labor market policies.
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NOTES

1. A more detailed description of the database can be found in the User Guide, the Cross-

Country Report and the Cross-Country Comparability Report on their website. The reader

must be aware that data collection rules and procedures across countries are different, and

out of CompNet’s control. Hence, despite all efforts made to improve sample comparability

across countries (including the use of population weights), some country samples might still

suffer from biases. For a more detailed account of raw data characteristics and sample biases,

please refer to the Cross-Country Comparability Report.
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APPENDIX

A GENERAL EQUILIBRIUM OF THE BENCHMARK MODEL

ρt = G(ãt) (A.1)

c−σt = βRtEt

[
exp(dt+1)

exp(dt)
c−σt+1

]
(A.2)

yt = Ztnt

∫ ∞
ãt

ht(a)a
g(a)

1−G(ãt)
da = ntZ

1+ν
ν

t

(
λt
ξh

) 1
ν
∫ ∞
ãt

a
1+ν
ν

g(a)

1−G(ãt)
da (A.3)

nt = (1− ρt)(nt−1 +mt−1) (A.4)

m(ut, vt) = Buµt v
1−µ
t = Bθ1−µ

t (1− nt)︸ ︷︷ ︸
≡ut

(A.5)

q(θt) =
m(ut, vt)

vt
= Bθ−µt (A.6)

λt = c−σt (A.7)

ψΓ′t,v
q(θt)

= βE

{
exp(−dt+1)

exp(−dt)
λt+1
λt

[
(1− ρt+1)

(
yt+1
nt+1

. . .

−
∫ ∞
ãt+1

wt+1(a)ht+1(a)
g(a)

1− ρt+1
da+

ψΓ′t+1,v
q(θt+1)

)
− ρt+1F

]} (A.8)

yt = ct + ψΓt +
ntρt

1− ρt
F (A.9)

ht(a) =

(
Ztλta

ξh

) 1
ν

(A.10)

Ht(ãt) =

(
Ztλt
ξh

) 1
ν
∫ ∞
ãt

a
1
ν

g(a)

1−G(ãt)
da (A.11)

wt(a)ht(a) =
1− ζ
λt

(
ξh
ht(a)1+ν

1 + ν
+ ξn

)
+ ζ

(
θtψΓ′t,v + Ztht(a)a . . .

+

(
1− (1− θtq(θt))βEt

{
exp(−dt+1)

exp(−dt)
λt+1
λt

})
F

) (A.12)

∫ ∞
ãt

wt(a)ht(a)
g(a)

1−G(ãt)
da = (1− ζ) 1

λt

(
ξh

∫ ∞
ãt

ht(a)1+ν

1 + ν

g(a)

1−G(ãt)
da+ ξn

)
. . .

+ ζ

(
yt
nt

+ θtψΓ′t,v +
(

1− (1− θtq(θt))βEt

[
exp(−dt+1)

exp(−dt)
λt+1
λt

])
F

) (A.13)

ãt =


ξn
λt

+ ζ
1−ζ θtψΓ′t,v − 1

1−ζ
ψΓ′t,v
q(θt)

−
(

1 + ζ
1−ζ (1− θtq(θt))βEt

[
exp(−dt+1)

exp(−dt)
λt+1
λt

])
F

Z
1+ν
ν

t

(
λt
ξh

) 1
ν


ν

1+ν

(A.14)

ln(Zt) = ρz ln(Zt−1) + εz, εz ∼ N(0,σ2
z ) (A.15)

33



ln(dt) = ρd ln(dt−1) + εd, εd ∼ N(0,σ2
d) (A.16)

B MODEL WITH FIRING COSTS ON NET EMPLOYMENT

REDUCTION

In this section, we present an alternative version of our benchmark model in which firing

costs apply only to net reductions in employment instead of job destruction flows. Because

only net reductions but not net increases in employment are costly, firing costs introduce a

strong non-linearity in the model. We use the piecewise linear solution method proposed in

Guerrieri and Iacoviello (2015) to solve the model.

B.I Model

Compared to the benchmark model presented in Section II, only the firm problem changes

(equation II.6):

P = E0

{ ∞∑
t=0

exp(dt)βtλt
[
yt − nt

∫ ∞
ãt

wt(a)ht(a)
g(a)

1−G(ãt)
da−ψΓt − FInt<nt−1(nt−1 − nt)

]}
,

where Int<nt−1 denotes an indicator that equals one if employment in period t is reduced.

When bargaining, firms and household take into account the asymmetric firing cost scheme.

The general equilibrium equations are as follows (only equations A.8, A.9, A.12, A.13 and

A.14 change):

ρt = G(ãt) (B.1)

c−σt = βRtEt

[
exp(dt+1)

exp(dt)
c−σt+1

]
(B.2)

yt = Ztnt

∫ ∞
ãt

ht(a)a
g(a)

1−G(ãt)
da = ntZ

1+ν
ν

t

(
λt
ξh

) 1
ν
∫ ∞
ãt

a
1+ν
ν

g(a)

1−G(ãt)
da (B.3)

nt = (1− ρt)(nt−1 +mt−1) (B.4)

m(ut, vt) = Buµt v
1−µ
t = Bθ1−µ

t (1− nt)︸ ︷︷ ︸
≡ut

(B.5)

q(θt) =
m(ut, vt)

vt
= Bθ−µt (B.6)

λt = c−σt (B.7)
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ψΓ′t,v
q(θt)

= βE

{
exp(−dt+1)

exp(−dt)
λt+1
λt

[
(1− ρt+1)

(
yt+1
nt+1

. . .

−
∫ ∞
ãt+1

wt+1(a)ht+1(a)
g(a)

1− ρt+1
da+ Int+1<ntF +

ψΓ′t+1,v
q(θt+1)

)]}
. . .

− β2 E

[
exp(−dt+2)

exp(−dt)
λt+2
λt

(1− ρt+1)I
nt+2<nt+1F

] (B.8)

yt = ct + ψΓt + Int<nt−1(nt − nt−1)F (B.9)

ht(a) =

(
Ztλta

ξh

) 1
ν

(B.10)

Ht(ãt) =

(
Ztλt
ξh

) 1
ν
∫ ∞
ãt

a
1
ν

g(a)

1−G(ãt)
da (B.11)

wt(a)ht(a) =
1− ζ
λt

(
ξh
ht(a)1+ν

1 + ν
+ ξn

)
+ ζ

(
θtψΓ′t,v + Ztht(a)a . . .

+

(
Int<nt−1 − βEt

{
exp(−dt+1)

exp(−dt)
λt+1
λt

Int+1<nt

})
F

) (B.12)

∫ ∞
ãt

wt(a)ht(a)
g(a)

1−G(ãt)
da = (1− ζ) 1

λt

(
ξh

∫ ∞
ãt

ht(a)1+ν

1 + ν

g(a)

1−G(ãt)
da+ ξn

)
. . .

+ ζ

(
yt
nt

+ θtψΓ′t,v +
(

Int<nt−1 − βEt

{
exp(−dt+1)

exp(−dt)
λt+1
λt

Int+1<nt

})
F

) (B.13)

ãt =


ξn
λt

+ ζ
1−ζ θtψΓ′t,v − 1

1−ζ
ψΓ′t,v
q(θt)

−
(

Int<nt−1 − βEt

{
exp(−dt+1)

exp(−dt)
λt+1
λt

Int+1<nt
})

F

Z
1+ν
ν

t

(
λt
ξh

) 1
ν


ν

1+ν

(B.14)

ln(Zt) = ρz ln(Zt−1) + εz, εz ∼ N(0,σ2
z ) (B.15)

ln(dt) = ρd ln(dt−1) + εd, εd ∼ N(0,σ2
d) (B.16)

B.II Solution method

Because of the asymmetric firing costs, the linear solution method we use for our benchmark

model is not useful. To obtain a solution of our model and simulate moments, we use the

piecewise linear solution method of Guerrieri and Iacoviello (2015). Guerrieri and Iacoviello

(2015) developed this method to solve dynamic models with occasionally binding constraints.

We choose this solution method because of two reasons. First, the method is well suited to

solve problems involving asymmetric adjustment costs. Second, since the method also takes

a linear approximation around the steady state, the results are better comparable with the

results of our baseline model, which are also computed based on a linear approximation.

The basic idea of the piecewise linear solution is that occasionally binding constraints can

be treated as different regimes of the same model. Under one regime the constraint is slack.
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Under the other regime, the constraint is binding. The solution method of Guerrieri and

Iacoviello (2015) involves a linear approximation around the same point under each regime.

Because the method takes into account how long agents expect to be in the regimes, the

solution can be highly non-linear.

In our case, the two regimes are as follows. Under the unconstrained regime, there are no

firing costs. The unconstrained regime is characterized by the general equilibrium equations

presented in Section B.I with the indicator function I = 0 at all times (or equivalently F = 0).

The regime applies in period t when nt ≥ nt−1. Vice versa, when nt < nt−1 the constrained

regime applies. This regime is characterized by the general equilibrium equations with the

indiactor function I = 1 at all times.

The piecewise linear solution method involves the linearization of both regimes around a

specific point. The steady state is a natural choice. However, in our case the steady state

is at nt = nt−1 = nsteady state ∀t ∈ N – the point at which the regimes switch. To avoid

convergence issues, we follow Guerrieri and Iacoviello (2015) (see the model with asymmetric

capital adjustment costs in their online appendix) and assume that the constrained regime

applies when nt < nt−1 + ε, with ε being a small number. Hence, at the point nt = nt−1,

the constrained regime holds and we linearize the model around the steady state of the

constrained regime.

B.III Impact of firing costs on steady state

Table 10 shows the impact of firing costs on the steady state of the alternative model.

Table 10: First Moments to Firing Cost Relation for EPL on Net Employment Reduction

F = 0 F = Fmax F = 30 ∗Fmax ∆F = 30 ∗Fmax

ȳ 0.31 0.31 0.32 2.06%
n̄ 0.90 0.90 0.93 3.86%
h̄ 0.33 0.33 0.33 -1.42%
v̄ 0.11 0.11 0.11 2.85%
ū 0.10 0.10 0.07 -34.71%
¯jcr 0.10 0.10 0.08 -15.97%
¯jdr 0.10 0.10 0.08 -15.97%

Note: The last column shows the percentage change after an in-
crease from F = 0 to F = 30 ∗ Fmax
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C DIFFERENT PARAMETERIZATIONS OF HOURS DISUTILITY

CURVATURE PARAMETER ν

Table 4 and 12 show the impact of firing costs on the steady state for the parameterization

with ν = 2 and ν = 0.5:

Table 11: Steady State to Firing Cost Relation: Robustness Check for ν = 2

F = 0% F ≈ 11% ∆ in %

ȳ 0.31 0.32 2.45%
n̄ 0.90 0.95 5.74%
h̄ 0.33 0.32 -1.56%
v̄ 0.11 0.02 -78.62%
ū 0.10 0.05 -51.68%
¯jcr 0.11 0.03 -71.99%
¯jdr 0.11 0.03 -71.99%

Note: The last column shows the percent-
age change after an increase from F = 0
to F = Fmax

Table 12: Steady State to Firing Cost Relation: Robustness Check for ν = 0.5

F = 0% F ≈ 11% ∆ in %

ȳ 0.32 0.32 1.37%
n̄ 0.90 0.98 8.96%
h̄ 0.33 0.31 -5.64%
v̄ 0.11 0.01 -90.57%
ū 0.10 0.02 -80.73%
¯jcr 0.11 0.01 -88.48%
¯jdr 0.11 0.01 -88.48%

Note: The last column shows the percent-
age change after an increase from F = 0
to F = Fmax

D MODEL WITH DIFFERENT DISMISSAL PROCEDURE

In this section, we present a version of our benchmark with a different modeling approach for

EPL. In contrast to our baseline model, firms can dismiss workers at no dismissal cost if the

employee has just matched with the firm in the previous period and has not yet participated

in the firm’s production process. In the following, we describe briefly the model, the general

equilibrium equations and some further results.
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D.I Model and general equilibrium equations

With the alternative firing cost mechanism, we need to distinguish between new and already

existing matches. Because firing costs only apply to worker-firm pairs that already existed in

the previous period, the amount of hours worked, the wage payments and also the separation

rate differs for new and existing matches differs. We denote ρit the job destruction rate, ãit
the threshold proctivity level, hit(a) hours worked and wit(a) the hourly wages of an already

existing worker-firm pair (i = E) or of a new worker-firm match (i = N). The household

problem (equation II.1) rewrites as follows:

E0

∞∑
t=0

βt

[
c1−σ
t

1− σ −
(
ξh(1− ρEt )nt−1

∫ ∞
ãEt

hEt (a)
1+ν

1 + ν

g(a)

1−G(ãt)
da...

... + ξh(1− ρNt )mt−1

∫ ∞
ãNt

hNt (a)1+ν

1 + ν

g(a)

1−G(ãt)
da+ ξN

n1+η
t

1 + η

)]
s.t. ct + bt ≤ Rt−1bt−1 +whEt (1− ρEt )nt−1 +whNt (1− ρNt )mt−1 + tt

With whit =
∫∞
ãit
wit(a)h

i
t(a)

g(a)
1−G(ãt)

da, with i = E,N

The production function (equation II.4) has to be adjusted to take into account the

difference between new and existing matches:

yt = Z
1+ν
ν

t λ
1
ν
t ξ
−1
ν
h

(
nt−1

∫ ∞
ãEt

a
1+ν
ν g(a)da+mt−1

∫ ∞
ãNt

a
1+ν
ν g(a)da

)

The firm problem (equation II.6) has to be rewritten as:

P = E0

{ ∞∑
t=0

exp(dt)βtλt
[
yt − nt

∫ ∞
ãt

wt(a)ht(a)
g(a)

1−G(ãt)
da−ψΓt − ρNt nt−1F

]}
.

To solve the model, the wage and hours bargaining problem has to be solved for new and

existing matches separately. Below is the list of general equilibrium equations. In case of no

firing costs, the equilibrium is the same as in the benchmark model.

ρEt = G(ãEt ) (D.1)

ρNt = G(ãNt ) (D.2)
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c−σt = βRtEt

[
exp(dt+1)

exp(dt)
c−σt+1

]
. (D.3)

yt = Z
1+ν
ν

t λ
1
ν
t ξ
−1
ν
h

(
nt−1

∫ ∞
ãEt

a
1+ν
ν g(a)da+mt−1

∫ ∞
ãNt

a
1+ν
ν g(a)da

)
(D.4)

nt = (1− ρEt )nt−1 + (1− ρNt )mt−1 (D.5)

θ = vt/ut (D.6)

m(ut, vt) = Buµt v
1−µ
t = Bθ1−µ

t ut (D.7)

ut = (1− nt) (D.8)

q(θt) =
m(ut, vt)

vt
= Bθ−µt (D.9)

λt = c−σt (D.10)

yt = ct + ψΓ′t,v + ρEt nt−1F (D.11)

χΓ′t,v
qt

= βEt

[
exp(−dt+1)

exp(−dt)
λt+1
λt

(1− ζ)Z
1+ν
ν

t+1 λ
1
ν
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ãEt

) 1+ν
ν − (1− ζ) ξNn

η
t

λt
− ζθtψΓ′t,v . . .

+ βEt

{
exp(−dt+1)

exp(−dt)
λt+1
λt

(1− ζ) ν

1 + ν
Z

1+ν
ν

t+1 λ
1
ν
t+1ξ

−1
ν
h (1− ρEt+1) . . .(∫ ∞
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ln(Zt) = ρz ln(Zt−1) + εz, εz ∼ N(0,σ2
z ) (D.17)
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ln(dt) = ρd ln(dt−1) + εd, εd ∼ N(0,σ2
d) (D.18)

D.II Further results

Table 13 shows the effect of an increase in firing costs based on the alternative firing cost

mechanism. As can be seen in the table, the impact of firing costs is qualitatively similar to

the benchmark model. The main difference is concerns the size of the effect. In particular,

firing costs reduce the steady state job creation and destruction rate by less if firing costs

only occur with long lasting employment relationships.

Table 13: Steady State to Firing Cost Relation: Robustness Check for Different Dismissal
Procedure

F = 0% F ≈ 11% ∆ in %

ȳ 0.31 0.32 2.75%
n̄ 0.90 0.96 6.77%
h̄ 0.33 0.32 -2.68%
v̄ 0.11 0.06 -44.36%
ū 0.10 0.04 -60.87%
¯jcr 0.10 0.05 -52.11%
¯jdr 0.10 0.05 -51.79%

Note: The last column shows the percent-
age change after an increase from F = 0
to F = Fmax
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FIGURES

Figure 1: Protection Against Dismissal and fluctuations in the job creation rate relative to the
variance in the job destruction rate

Figure 2: Protection Against Dismissal and correlation between unemployment and vacancies
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Figure 3: Protection Against Dismissal and fluctuations in hours worked relative to fluctuations in
employment

Figure 4: Protection Against Dismissal and fluctuations in the job creation rate relative to the
variance in the job destruction rate
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Figure 5: Protection Against Dismissal and correlation between unemployment and vacancies

Figure 6: Protection Against Dismissal and fluctuations in hours worked relative to fluctuations in
employment
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Figure 7: Impulse response to a positive technology shock of size σz

(a) F = 0 (b) F = Fmax

Figure 8: Impulse response to a positive discount factor shock of size σd

(a) F = 0 (b) F = Fmax
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Figure 9: Empiricial Regularities: Model fit for ν = 2

(a) Var(JCR)/Var(JDR) (b) corr(v,u) (c) Var(h)/Var(n)

Figure 10: Empiricial Regularities: Model fit for ν = 0.5

(a) Var(JCR)/Var(JDR) (b) corr(v,u) (c) Var(h)/Var(n)

Figure 11: Empiricial Regularities: Model fit for Different Firing Procedure

(a) Var(JCR)/Var(JDR) (b) corr(v,u) (c) Var(h)/Var(n)
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